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Abstract: Hybrid beamformer design is a crucial stage in millimeter wave (mmWave) MIMO systems. For 
millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, hybrid processing 
architecture is usually used to reduce the complexity and cost, which poses a very challenging issue in channel 
estimation. In this work, we propose a convolutional neural network (CNN) framework for the joint design of 
precoder and combiners. In this work, deep convolutional neural network (CNN) is employed to address this 
problem. We first propose a spatial frequency CNN (SF-CNN) based channel estimation exploiting both the 
spatial and frequency correlation, where the corrupted channel matrices at adjacent subcarriers are input into 
the CNN simultaneously. Then, exploiting the temporal correlation in time varying channels, a spatial-
frequency-temporal CNN (SFT-CNN) based approach is developed to further improve the accuracy. Moreover, 
we design a spatial pilot-reduced CNN (SPR-CNN) to save spatial pilot overhead for channel estimation, 
where channels in several successive coherence intervals are grouped and estimated by a channel estimation 
unit with memory. 

Numerical results show that the proposed SF-CNN and SFT-CNN based approaches outperform the non-ideal 
minimum mean squared error (MMSE) estimator but with reduced complexity, and achieve the performance 
close to the ideal MMSE estimator that is very difficult to be implemented in practical situations. They are also 
robust to different propagation scenarios. 

The proposed network accepts the input of channel matrix and gives the output of analog and baseband beam-
formers. Previous works are usually based on the knowledge of steering vectors of array responses which is 
not always accurately available in practice. The SPR-CNN based approach achieves comparable performance 
to SF-CNN and SFT-CNN based approaches while only requires about none third of spatial pilot overhead at 
the cost of complexity. Our work clearly shows that deep CNN can efficiently exploit channel correlation to 
improve the estimation performance for mmWave massive MIMO systems. 
 
Keywords: mmWave, MIMO, Hybrid beamforming,Deep learning, Convolutional neural network, Channel 
estimation. 

 
I. INTRODUCTION 

Hybrid beamforming is a promising architecture to 
be used in next generation millimeter wave 
(mmWave) MIMO(Multiple Input Multiple Output) 
systems where robust beamforming performance is 
provided with smaller cost and less number of fully-
digital beamformers. Several methods are proposed 
to design the hybrid beamformers. In a greedy-based 
approach, orthogonal matching pursuit (OMP), is 
proposed where the analog precoder and combiners 
are selected from a dictionary of transmit and 
receive array responses. This algorithm requires the 
knowledge of the user direction-of-arrival/aperture 
(DOA/DOD) angles to construct such a dictionary.  
 
Using the connection between the optimum and the  

 
hybrid beamformers, proposes an alternating 
minimization approach to estimate the analog and 
baseband beamformers based on phase extraction. 
 
Millimeter wave (mmWave) communications can 
meet the high data rate demand due to its large 
bandwidth. Its high propagation loss can be well 
compensated by using massive multiple- input 
multiple-output (MIMO) technique. However, Due 
to the limited physical space with closely placed 
antennas and prohibitive power consumption in 
mmWave massive MIMO systems, it is difficult to 
equip a dedicated radio frequency (RF) chain for 
each antenna. To reduce complexity and cost, phase 
shifter based two-stage architecture, usually called 
hybrid architecture, is widely used at both the 
transmitter and the receiver to connect a large 
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number of antennas with much fewer RF chains. 
 
The above works provides optimization-based and 
greedy based solutions for hybrid beam-forming 
problem. However achieving the optimum solution 
and the computation time are the main drawbacks of 
the above techniques. In order to circumvent this 
issue, we consider deep learning (DL)- based 
techniques for the hybrid beam-forming problem. 
DL has several advantages such as low 
computational complexity when 
solvingoptimization-based or combinatorial/greedy 
search problems and the ability to extrapolate new 
features from a limited set of features contained in a 
training set. A great deal of attention is received for 
DL-based techniques in communications society for 
the problems such as channel estimation DOA 
estimation, antenna selection, and analog beam 
selection. 
 
II. METHODOLOGY 

Convolutional Neural Network 
In deep learning, a convolutional neural network 
(CNN, or ConvNet) is a class of artificial neural 
network, most commonly applied to analyze visual 
imagery. They are also known as shift invariant or 
space invariant artificial neural networks (SIANN), 
based on the shared-weight architecture of the 
convolution kernels or filters that slide along input 
features and provide translation equivariant 
responses known as feature maps. CNNs are 
regularized versions of multilayer perceptrons. 
Multilayer perceptrons usually mean fully connected 
networks, that is, each neuron in one layer is 
connected   to   all   neurons   in    the next layer. 
The "full connectivity" of these    networks    make    
them    prone to overfitting data. Typical ways of 
regularization, or preventing overfitting, include: 
penalizing parameters during training (such as
 weight decay) or trimming connectivity 
 
 
 
 
 
 
 
             Fig1 Softmax Layer. 
 

A. Convolution Layer 
A Convolution neural network has one or more 
convolutional layers and are used mainly for image 
processing, classification, segmentation etc. 
convolution is essentially sliding a filter over the 
input rather than looking at an entire image at once 
to find certain features it  can be more  effective to 
look at smaller. 
 
This layer consists of a set of learnable filters that 
we slide over the image spatially, computing dot 
products between the entries of the filter and the 
input image. The filters should extend to the full 
depth of the input image. 
 
B. Pooling Layer 
Pooling is a form of non-linear down- sampling. The 
goal  of the pooling layer is to progressively reduce 
the spatial size of the representation to reduce the 
amount of parameters  and computation in the 
network, and hence to also control overfitting. There 
are  several functions to implement pooling among 
which max 
 
pooling is the most common  one. Pooling is often 
applied with filters of size 2x2 applied with a stride 
of 2 at every depth slice. A pooling layer of size 2x2 
with stride of 2 shrinks the input image to a 1/4 of its 
original size. 
 
III. IMPLEMENTATION 

An end-to-end communication scenario is modeled 
in and by using auto- encoders where single-input-
single-output (SISO) systems are considered also 
uses auto-encoders for the channel state information 
(CSI) feedback problem. Very recently, a DL based 
hybrid beamforming is considered in where only 
precoder design is considered whereas joint precoder 
and combiner design is used in massive MIMO 
system where the beamforming is required in both 
end of the communication. The proposed network 
architecture in is based on multi-layer perceptrons 
which do not effectively extract the hidden features 
inherit in the input data. In order to achieve feature 
extraction and obtain better performance, we 
propose a convolutional neural network (CNN) 
framework for mmWave massive MIMO systems. 
 
For mmWave massive MIMO systems with the 
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hybrid architecture, channel estimation is a 
challenging problem. Previously a hierarchical 
multi-resolution codebook has been designed, based 
on which an adaptive channel estimation algorithm 
has been developed by exploiting the channel 
sparsity. The structured sparsity in angle domain has 
been utilized to estimate the wideband channel for 
multi-user mmWave massive MIMO uplink. A 
channel estimation approach has been developed for 
mmWave massive MIMO orthogonal frequency 
division multiplexing (OFDM) systems with low-
precision analog-to-digital converters (ADCs). For 
the mmWave MIMOOFDM downlink, a channel 
parameter estimation for the angles, time delays, and 
fading coefficients has been proposed, resorting to 
the low-rank tensor decomposition. Instead of 
estimating the mmWave MIMO channel directly, the 
method for singular subspace estimation has been 
proposed, based on which a subspace decomposition 
algorithm has been further developed to design the 
hybrid analog-digital architecture. Deep learning 
(DL) has been successfully used in joint channel 
estimation and signal detection of OFDM systems 
with interference and non-linear distortions. 
 
An iterative channel estimation has been proposed 
for the lens mmWave massive MIMO systems, 
where denoising neural network (NN) is used in 
each iteration to update the estimated channel. To 
reduce the CSI feedback overhead of the frequency 
duplex division (FDD) massive MIMO system, DL 
has been employed to compress the channel into a 
low dimensional codeword and then to perform 
recovery with high accuracy. Exploiting temporal 
correlation of the channel, long short-term memory 
(LSTM) based deep NN (DNN) has been introduced 
to develop a more efficient channel compression and 
recovery method for the CSI feedback. DL has been 
applied to estimate channels in wireless power 
transfer systems, which outperforms the 
conventional scheme in terms of both estimation 
accuracy and harvested energy. In supervised 
learning algorithms have been used to acquire the 
downlink CSI for FDD massive MIMO systems with 
reduced overheads for pilot and CSI feedback. The 
supervised learning has been exploited to perform 
blind detection for massive MIMO systems with 
low- precision ADCs. The conventional channel 
estimation    methods    usually    perform 
unsatisfactorily   in   the   more   practical massive 

MIMO-OFDM systems. To exploit the correlation 
among channels at adjacent subcarriers in OFDM,  
 

 
Fig 2 Flowchart of CNN Based Preorder and 
Combiner Design 
 
We consider a mmWave massive MIMO-OFDM 
system as in Fig.2, where the transmitter is with 
NT antennas and NTRF RF chains and the receiver 
is with NR complicated channel model and also 
suffer antennas   and   N RF   RF   chains.   Phase 
from high complexity. In contrast, the deep 
convolutional NN (CNN) is more capable to 
extract the inherent characteristics underlying the 
channel matrix from the large amount of data and 
provides the potential to estimate the channel more 
accurately with lower complexity by using the 
efficient parallel computing methods. In this paper, 
we use the deep CNN to address channel 
estimation for mmWave  shifters are employed to 
connect a large number of antennas with a much 
fewer number of RF chains at both the transmitter 
and the receiver sides. We therefore assume NT>> 
NT

RF & NR>> NR
RF. 
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Fig3 CNN Layer Of Precoder (at Tx) and 
Combiner (at Rx). 
 
The NR × NT channel matrix between the 
receiver and the transmitter in the delay 
domain is given by 

 
where L is the number of main paths, α1 –given 
bywhere fs denotes the sampling rate and K is the 
number of OFDM subcarriers. To estimate Hk, the 
transmitter activates only one RF chains to transmit 
the pilot on one beam in each channel use while the 
receiver combines the received pilot by using all 
RF chains associated with different beams. In more 
detail, the transmitter transmits pilots, Xk;u, using 
MT beamforming vectors. For the transmit pilot 
signal corresponding to each beamforming vector, 
fk;u, the receiver employs MR combining vectors, 
to respectively process it. Since the receiver is 
equipped with N R (< M ) RF chains, it CN(0,σ2α) 
is the propagation gain of the lth 
can only use N R combining vectors in a path, τ1 is 
the delay of the lth path, ɸ1 and ɸ1 ϵ[0 to 2π], are 
the azimuth angles of arrival and departure 
(AoA/AoD) at the receiver and the transmitter, 
respectively. For uniform linear array (ULA), the 
corresponding response vectors can be expressed 
as 

 
 

 
 

where d and λ denote the distance between the 
adjacent antennas and carrier wavelength, 
respectively. According to the channel model, the 
frequency domain channel of the kth subcarrier in 
OFDM is channel use. Then, if the receiver uses all 
MR combining vectors to process a beamforming 
vectorcarrying pilot, the required channel uses will 
be [ MR / N R]. So the total channel uses for 
processing all beamforming vectors will be MT [ 
MR / N R] Then the pilot signal matrix associated 
with the kth subcarrier at the baseband of the 
receiver can be written as 
 

 
XK is an MT × MT diagonal matrix with its uth 
diagonal element being xk;u. N ‘ = WkH.NK 
denotes the effective noise after combining and NK 
is additive white Gaussian noise (AWGN) with 
CN(0, 1) elements before combining. We consider 
the pilot insertion in both frequency and time 
domain. Specifically, adjacent Q (Q ≥2) subcarriers 
respectively place pilots with the same length at the 
beginning of a coherence interval to form a pilot 
subcarrier block and the rest of time slots in each 
coherence interval are used for data transmission. 
Two pilot subcarrier blocks are separated by Qd 
(Qd ≥ 0) subcarriers dedicated to data transmission. 
Pilots are utilized to estimate the channels of 
corresponding time-frequency positions. Based on 
the estimated channels, interpolation can be 
applied to get the channels at the positions without 
pilots. It is clear that the accuracy of interpolation 
is dependent on the accuracy of the estimated 
channels and the variation of channels. Therefore, 
we will focus on improving the accuracy of the 
pilot based channel estimation in this paper so that 
more reliable reference values can be provided for 
interpolation. 
 
Block Diagram of Proposed System 
A. SF – Channel 
 
(Please refer last page of this article.) 
we first propose a spatial-frequency CNN (SF-
CNN) based channel estimation, where the 
tentatively estimated channel matrices at adjacent 
subcarriers are input into the CNN 
simultaneously. 

Fig 4 Block Diagram of SF-CNN. 
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B. SFT – Channel 

Fig 5 Block Diagram of SFT-CNN. 
 
To further exploit the temporal correlation, a 
spatial-frequency temporal CNN (SFT- CNN) 
based channel estimation is developed, where the 
channel information of the previous coherence 
interval is utilized when estimating the channel 
matrices of the current coherence interval. The 
SFT-CNN based approach incorporates all types 
of channel correlation in a simple way and yields 
remarkable performance gains that can be used to 
significantly save the spatial pilot overhead due to 
large scale arrays. 
 
Fig 6 Block Diagram of SPR-CNN. 
(Please refer last page of this article.) 
 
Therefore, we propose a spatial pilot-reduced 
CNN (SPR-CNN) based channel estimation, 
where channels in several successive coherence 
intervals are grouped and estimated by a channel 
estimation unit (CEU) with memory. 
 
IV. RESULTS 

Fig 7 SF-Channel SNR Graph shows losses 
according to trained epoch and test data. 

 

Fig 8 SFT-Channel SNR Graph shows 
losses according to trained epoch and test 
data 

 
Fig 9 SPR-Channel SNR Graph shows 
losses according to trained epoch and test 
data 

V. CONCLUSION 

In this work, a CNN framework is proposed for 
the joint estimation of precoder and combiners in 
hybrid beamforming problem. We show that the 
proposed network architecture provides better 
spectral efficiency as compared to the 
optimization-based and greedy-based algorithm. 
 
From the numerical results, the proposed SF-CNN 
and SFT-CNN based approaches outperform the 
non-ideal minimum mean squared error (MMSE) 
estimator and achieve the performance very close 
to the ideal MMSE estimator that is very difficult 
to be implemented in practical systems. They are 
also with lower complexity than the MMSE 
estimator and exhibit the unique robustness to 
maintain the fairly good performance when facing 
different channel statistics. The SPR-CNN based 
approach achieves comparable performance to SF-
CNN and SFT-CNN based approaches by using 
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only about one third of spatial pilot overhead and 
moderately increased complexity. In this project, 
we propose a CNN-based framework with two 
CNNs, each of which is dedicated to estimate the 
analog precoders and combiners respectively. 
 
In future work, we reserve the case when the 
training data is small where transfer learning-like 
approaches can be developed. 
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Fig 6 Block Diagram of SPR-CNN

Fig 4 Block Diagram of SF-CNN. 


